If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-113x+232=0
a = 9; b = -113; c = +232;
Δ = b2-4ac
Δ = -1132-4·9·232
Δ = 4417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-113)-\sqrt{4417}}{2*9}=\frac{113-\sqrt{4417}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-113)+\sqrt{4417}}{2*9}=\frac{113+\sqrt{4417}}{18} $
| 6.6+w=-2.6 | | -9x-4+7x=-27 | | 8-2x=-4+2x | | w/2-2=9 | | --5n/4=15/2 | | 20=3(u+2)+2 | | 2.25+8.50x=1.10+2.50x | | 2x−2+3x=x+5 | | 3x+6=8-x | | 5=3(c+1)-1 | | q/3+-7=-5 | | 2/3(x−3)=1/6(9x+27)+3 | | 0.15=t-0.45 | | 5/3(3x-6)-(6-4x)=29 | | 1/3-3/4x=7/6 | | 6x-64=2x+64 | | 12t+2t+6t=20 | | 10x+6x−9=17x−15 | | 2(a+7))-7=9 | | 1/2(7t-5)=t+5/4 | | 0.4(10x+25)=4x+10 | | -2a^2-1=a^2-13 | | 1/4+3/4n=1/2 | | 20+(25x)=40+(20x) | | 2(c+4.5)=32 | | x+3+(4x−11)=17 | | x+9/10=4/5+x-5/2 | | x+3+4x−11=17 | | 1÷4x+2=3+3÷4x | | 1/5n+3/5=2/5 | | -6=²/⁹x | | 10x-2=4x-7 |